北京高考在线

登录 | 注册

高中数学中函数单调性和极值问题解题方法

2024-03-19 09:55|编辑: 张老师|阅读: 78

摘要

求函数的单调性、极值的方法、值与最小值的方法,解决不等式和导数在实际解题中的应用方法

为了帮助大家在高中数学中掌握函数单调性和极值问题解题方法,北京高考在线整理了求函数的单调性、极值的方法、值与最小值的方法,解决不等式和导数在实际解题中的应用方法,建议大家收藏学习。

一、求函数的单调性的方法

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.

二、求函数的极值的方法

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值).

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:(4)检查f(x)的符号并由表格判断极值.

三、求函数的值与最小值的方法

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值.函数在定义域内的极值不一定,但在定义域内的最值是的.

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值.

四、解决不等式的有关问题的方法

(1)不等式恒成立问题(绝对不等式问题)可考虑值域.

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0.

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0.

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0.

五、导数在实际解题中的应用方法

实际解题求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明.

声明:本文由北京高考在线团队(微信公众号:bjgkzx)排版编辑,内容来源于网络整理,如有侵权,请及时联系管理员删除。

0

收藏

分享到:

微信扫一扫分享

QR Code

微信里点“发现”

扫一下二维码便可将本文分享至朋友圈

报错
高中数学

2023年全国各省市高考试题及答案汇总2024-02-20

2023-2024学年全国各省市高三热门联考试题汇总2024-04-16

2023年全国各省市高考招生录取投档分数线汇总2023-07-25

没有更多了

  • 2024北京高三一模

  • 2024选考科目要求

  • 专业录取分数线

  • 2024强基计划招生简章

  • 海淀一模试题

  • 西城一模试题

  • 优质试题

    优质试题

  • 福利领取

    福利领取

  • 强基综评

    强基综评

  • 高考指南

    高考指南

  • 招生简章

    招生简章

  • 学科竞赛

    学科竞赛

  • 选科指南

    选科指南

  • 升学招生

    升学招生

  • 录取分数

    录取分数

微信识别二维码 关注官方公众号

京考一点通

bjgkzx 复制